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Abstract
A new direct and unified algebraic method for constructing multiple travelling
wave solutions of general nonlinear evolution equations is presented and
implemented in a computer algebraic system. Compared with most of the
existing tanh methods, the Jacobi elliptic function method or other sophisticated
methods, the proposed method not only gives new and more general solutions,
but also provides a guideline to classify the various types of the travelling
wave solutions according to the values of some parameters. The solutions
obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions,
(b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and
Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic
periodic wave solutions exactly degenerate to the soliton solutions at a certain
limit condition. The efficiency of the method can be demonstrated on a
large variety of nonlinear evolution equations such as those considered in
this paper, KdV–MKdV, Ito’s fifth MKdV, Hirota, Nizhnik–Novikov–Veselov,
Broer–Kaup, generalized coupled Hirota–Satsuma, coupled Schrödinger–KdV,
(2 + 1)-dimensional dispersive long wave, (2 + 1)-dimensional Davey–
Stewartson equations. In addition, as an illustrative sample, the properties
of the soliton solutions and Jacobi doubly periodic solutions for the Hirota
equation are shown by some figures. The links among our proposed method,
the tanh method, extended tanh method and the Jacobi elliptic function method
are clarified generally.

PACS numbers: 02.30.Jr, 03.65.Fd

1. Introduction

The investigation of the travelling wave solutions of nonlinear evolution equations plays an
important role in the study of nonlinear wave phenomena. The wave phenomena observed in
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fluid dynamics, plasma, elastic media, optical fibres, etc are often modelled by bell-shaped
sech solutions and kink-shaped tanh solutions. The analytical solutions, if available, of
nonlinear evolution equations facilitate the verification of numerical solvers and aids in the
stability analysis of solutions. In the past decades, both mathematicians and physicists have
made significant progression in this direction. Many effective methods such as the inverse
scattering method [1, 2], Darboux transformation [3–10], the Hirota bilinear method [11–13],
the homogeneous balance method [14–16] and the tanh method [17–22] have been developed.
Among those, the tanh method is considered to be the most effective and direct algebraic
method for solving nonlinear equations. In recent years, much work has been concentrated
on the various extensions and applications of the tanh method. The basic purpose of these
papers is to simplify the routine calculation of the method or obtain more general solutions
of nonlinear evolution equations [18–28]. The Weierstrass and Theta elliptic functions can be
used to find periodic solutions by applying spectral theory for KdV equation, coupled nonlinear
Schrödinger equation, etc. But usually this method is applied to the integrable nonlinear
evolution equations admitting Lax pairs representation [29, 30]. An alternative method is
to transform the equation under study to the Weierstrass equation, Jacobi equation, or more
generally, to Painlevé-type equations [31, 32]. This procedure is, in general, complicated
or impossible, especially for dissipative nonlinear evolution equations and nonlinear coupled
equations. Very recently, a Jacobi elliptic function expansion method, which is straightforward
and effective, was proposed for constructing periodic wave solutions for some nonlinear
evolution equations [33–35]. The essential idea of this method is similar to the tanh method
by replacing the tanh function with some Jacobi elliptic functions such as sn ξ , cn ξ and dn ξ .
For example, the Jacobi periodic solution in terms of sn ξ may be obtained by applying the
sn-function expansion. Many similarly repetitious calculations have to be done to search for
the Jacobi doubly periodic wave solutions in terms of cn ξ and dn ξ . If the equation does not
admit such types of solutions, these efforts will be in vain.

In this paper, we shall develop a new algebraic method with symbolic computation for
obtaining the above-mentioned various travelling wave solutions in a unified way. Compared
with most of the existing methods, the proposed method not only gives a unified formulation
to construct various travelling wave solutions, but also provides a guideline to classify the
various types of the travelling wave solutions according to the values of some parameters.
The paper is arranged as follows. In section 2, we describe our proposed method in detail and
explain its links with the tanh method, the extended tanh method and Jacobi elliptic function
method. In section 3, the proposed method is applied to various nonlinear evolution equations
for constructing new and fundamental multiple travelling wave solutions including soliton,
rational, triangular periodic, Jacobi and Weierstrass doubly periodic solutions. A conclusion
is then given in section 4.

2. Methodology

We shall describe the motivation of our method starting from the description of the tanh method
[17–22]. It is well known that for a given nonlinear equation

H(u, ut , ux, uxx, . . .) = 0 (2.1)

its travelling wave soliton solution can often be expressed as a polynomial of tanh function,
namely,

u(x, t) = U(ξ) =
n∑

i=0

aiϕ
i (2.2)
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where ϕ = tanh ξ with ξ = x + ct . The positive integer n can be determined by balancing the
highest derivative term with the nonlinear terms in equation (2.1). We substitute expansion
(2.2) into equation (2.1), and then equate to zero the coefficients of ϕi to obtain the explicit
expressions for c, a0, . . . , an. Recently, by taking advantage of the property that the Riccati
equation

ϕ′ = b + ϕ2 (2.3)

admits several types of solutions, we proposed an extended tanh method which can be used
to obtain more general travelling wave solutions than the tanh method. The key idea of the
extended tanh method is to replace the tanh ξ in expansion (2.2) by the solution of the Riccati
equation (2.3) [25, 26].

Now we try to generalize equation (2.3) so that the more general solutions of physical
relevance can be found. Then the following observations may be helpful to us. First,
often physically localized soliton solutions of most nonlinear evolution equations are the
superposition and/or combinations of different powers of tanh ξ and sech ξ , which exactly
solve the following equations:

ϕ′ =
√

1 − 2ϕ2 + ϕ4 (2.4)

and

ϕ′ = −ϕ
√

1 − ϕ2 (2.5)

respectively. On the other hand, there are two standard forms of elliptic functions in the
special function theory. One is the Weierstrass elliptic function ℘(ξ, g2, g3) which is doubly
periodical and satisfies the equation

ϕ′ = ±
√

−g3 − g2ϕ + 4ϕ3 (2.6)

where g2, g3 are called invariants of the Weierstrass elliptic function. The other is the Jacobi
elliptic function sn ξ = sn(ξ |m), which satisfies the equation

ϕ′ = ±
√

1 − (m2 + 1)ϕ2 + m2ϕ4 (2.7)

where m is a modulus of Jacobi elliptic functions. Jacobi elliptic functions are doubly
periodical and possess properties of triangular functions:

sn2 ξ + cn2 ξ = 1 dn2 ξ = 1 − m2 sn2 ξ

(sn ξ)′ = cn ξ dn ξ (cn ξ)′ = −sn ξ dn ξ (dn ξ)′ = −m2 sn ξ cn ξ.

When m → 1, the Jacobi functions degenerate to the hyperbolic functions, i.e.

sn ξ → tanh ξ cn ξ → sech ξ dn ξ → sech ξ

and when m → 0, the Jacobi functions degenerate to the triangular functions, i.e.

sn(ξ,m) → sin ξ cn ξ → cos ξ dn ξ → 1.

The more detailed notations for the Weierstrass and Jacobi elliptic functions can be found in
[36, 37]. Now replacing equation (2.3) by equation (2.6) or equation (2.7), we can obtain
the Jacobi and Weierstrass elliptic doubly periodic solutions, if available, of a given nonlinear
evolution equation.

The above hints and analysis motivate us to develop a direct and unified scheme
for constructing a series of travelling wave solutions. For this purpose, we extend
equations (2.4)–(2.7) to the following more general and unified equation:

ϕ′ = ε

√√√√ r∑
j=0

cjϕj (2.8)

where ε = ±1. The positive integer r and constants c0, c1, . . . , cr are to be determined.
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We remark here that the proposed method contains two balance parameters n and r. In
general, balancing the highest derivative term with nonlinear terms in equation (2.1) leads to
a special relation for n and r. For example, in the case of the MKdV equation

ut + 6u2ux + uxxx = 0

we have

r = 2(n + 1) (2.9)

and in the case of the Kawachara equation

ut + uux + αuxxx + βuxxxxx = 0 (2.10)

we have

n = 2(r − 2). (2.11)

Relations (2.9) and (2.11) will give the different possible values of n and r, which then lead to
the series expansions of the exact solutions for the above equations. For further illustration,
if we take n = 2 and r = 3 in (2.11), we obtain the following series expansion of an exact
solution for the Kawachara equation (2.10):

u = a0 + a1ϕ + a2ϕ
2 ϕ′ = ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3.

Similarly, taking n = 4, r = 4 in (2.11), we have

u = a0 + a1ϕ + a2ϕ
2 + a3ϕ

3 + a4ϕ
4 ϕ′ = ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4.

We see that the travelling wave solutions of equation (2.1) depend on the explicit solvability
of (2.8) with its coefficients c, ai, cj satisfying a system of algebraic equations. The solution
of such a system will be getting tedious with the increase of the values of n and r. But in
the case of equation (3.1) when r = 4, that is, equation (2.8) gives a series of fundamental
solutions such as soliton, rational, triangular periodic, Jacobi and Weierstrass doubly periodic
solutions. We only consider the case r = 4 in this paper and hence

ϕ′ = ε
√

c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4. (2.12)

Theorem 1. Suppose that ϕ is a solution of equation (2.12), then we have the following
results:

(i) If c3 = c1 = c0 = 0, equation (2.12) possesses a bell-shaped soliton solution

ϕ =
√

−c2

c4
sech(

√
c2ξ) c2 > 0 c4 < 0 (2.13)

a triangular solution

ϕ =
√

−c2

c4
sec(

√−c2ξ) c2 < 0 c4 > 0 (2.14)

and a rational solution

ϕ = − ε√
c4ξ

c2 = 0 c4 > 0. (2.15)
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(ii) If c3 = c1 = 0, c0 = c2
2

4c4
, equation (2.12) possesses a kink-shaped soliton solution

ϕ = ε

√
− c2

2c4
tanh

(√
−c2

2
ξ

)
c2 < 0 c4 > 0 (2.16)

and a triangular solution

ϕ = ε

√
c2

c4
tan

(√
c2

2
ξ

)
c2 > 0 c4 > 0. (2.17)

(iii) If c3 = c1 = 0, equation (2.12) admits three Jacobi elliptic function solutions

ϕ =
√

−c2m2

c4(2m2 − 1)
cn

(√
c2

2m2 − 1
ξ

)
c2 > 0 c0 = c2

2m
2(m2 − 1)

c4(2m2 − 1)2
(2.18)

ϕ =
√ −c2

c4(2 − m2)
dn

(√
c2

2 − m2
ξ

)
c2 > 0 c0 = c2

2(1 − m2)

c4(2 − m2)2
(2.19)

and

ϕ = ε

√
−c2m2

c4(m2 + 1)
sn

(√ −c2

m2 + 1
ξ

)
c2 < 0 c0 = c2

2m
2

c4(m2 + 1)2
. (2.20)

Here we generally clarify whether the modulus m will appear in the Jacobi doubly
periodic solutions (2.18)–(2.20) of equation (2.12). In the case when c3 = c1 = 0, by
using the transformations

c0 = c2
2m

2

c4(m2 + 1)2
ϕ̄ =

√
−c4(m2 + 1)

c2m2
ϕ ξ̄ =

√
− c2

m2 + 1
ξ

equation (2.12) is reduced to equation (2.7) and hence we can obtain the solution (2.20).
Again by using the relations among functions sn ξ , cn ξ and dn ξ , we also get solutions
(2.18) and (2.19). As m → 1 the Jacobi doubly periodic solutions (2.18) and (2.19) all
degenerate to the soliton solutions (2.13), and the Jacobi doubly periodic solution (2.20)
degenerates to (2.16).

(iv) If c4 = c1 = c0 = 0, equation (2.12) possesses a bell-shaped soliton solution

ϕ = −c2

c3
sech2

(√
c2

2
ξ

)
c2 > 0 (2.21)

a triangular solution

ϕ = −c2

c3
sec2

(√−c2

2
ξ

)
c2 < 0 (2.22)

and a rational solution

ϕ = 1

c3ξ2
c2 = 0. (2.23)

(v) If c4 = c2 = 0, c3 > 0, equation (2.12) admits a Weierstrass elliptic function solution

ϕ = ℘

(√
c3

2
ξ, g2, g3

)
(2.24)

where g2 = −4c1/c3 and g3 = −4c0/c3 are called invariants of Weierstrass elliptic
function. Actually, in the case when c2 = c4 = 0, by using the transformations

ξ̄ =
√

c3

2
ξ c0 = −1

4
c3g3 c1 = −1

4
c3g2

equation (2.12) is reduced to equation (2.6) and hence we have (2.24).
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Remark 1. The other types of travelling wave solutions such as csc ξ , cot ξ , csch ξ and coth ξ

can be obtained in theorem 1; they appear in pairs with the corresponding sec ξ , tan ξ , sech ξ

and tanh ξ . Since there is no clear physical relevance on the singular solutions in terms of
functions sec ξ , tan ξ and 1/ξ , we do not consider these solutions in this paper.

Remark 2. Let us consider three special cases of our proposed method. In the case when
c1 = c3 = 0, c0 = 1, c2 = −2, c4 = 1, equation (2.12) has a solution tanh ξ and our method
reduces to the tanh method [17, 18]. In the case when c1 = c3 = 0, c0 = b2, c2 = 2b, c4 = 1,
equation (2.12) degenerates to the Riccati equation (2.3); our proposed method becomes the
extended tanh method [26, 27]. The cases (2.18)–(2.20) readily cover the results of Jacobi
function expansion method [33–35]. In conclusion, our proposed method is a generalization
of the tanh method, the extended tanh method and Jacobi elliptic function method.

The algorithm presented here is also a computerizable method, in which generating an
algebraic system from equation (2.1) and solving it are two key procedures and laborious to
do by hand. But they can be implemented on a computer with the help of computer algebra
software such as Mathematica or Maple. The output solutions from the algebraic system
comprise a list of the form {c, ai, cj }. In general, if the values of some parameters are left
unspecified, then they are regarded to be arbitrary in the solution of equation (2.1).

3. Applications

In this section, we apply the technique developed in section 2 to various nonlinear evolution
equations which may be both integrable and non-integrable.

Example 1. Consider generalized coupled Hirota–Satsuma equation [11, 13]

ut = 1
4uxxx + 3uux + 3(v2 + w)x

vt = − 1
2vxxx − 3uvx (3.1)

wt = − 1
2wxxx − 3uwx.

This system was introduced by Satsuma and Hirota [11]. They found its three-soliton solutions
and showed that the well-known Hirota–Satsuma coupled KdV equation is a special case of
system (3.1) with w = 0 and x → √

2x, t → √
2t . Recently starting from its bilinear form,

Tam et al revisited system (3.1) and found a new type of soliton solution [13]. Here our
proposed method will give a series of travelling wave solutions for equation (3.1) as follows.

Using transformations u(x, t) = U(ξ), v(x, t) = V (ξ),w(x, t) = W(ξ), ξ = x + ct , we
reduce equation (3.1) to a system of ordinary differential equations:

cU ′ = 1
4U ′′′ + 3UU ′ + 3(−V 2 + W)′ = 0

cV ′ = − 1
2V ′′′ − 3UV ′ (3.2)

cW ′ = − 1
2 W ′′′ − 3UW ′.

We expand the solution of equation in the form

U =
n1∑

i=0

aiϕ
i V =

n2∑
i=0

biϕ
i W =

n3∑
i=0

diϕ
i

where ϕ satisfies (2.8).
Balancing the highest linear terms with nonlinear terms in (3.2), we obtain

r = n1 + 2 n2 � n1 n3 � 2n1.
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Therefore, we may choose r = 4, n1 = n2 = n3 = 2 and have the following expansions:

U = a0 + a1ϕ + a2ϕ
2 V = b0 + b1ϕ + b2ϕ

2 W = d0 + d1ϕ + d2ϕ
2 (3.3)

where ϕ satisfies (2.12).
With the help of the symbolic software Mathematica, by substituting (3.3) into (3.2) and

setting the coefficients of ϕi
√

c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4 (i = 0, 1, . . .) to zero, we further
obtain a system of algebraic equations:

4εca1 − 12εa0a1 + 24εb0b1 − 3ε3a2c1 − ε3a1c2 − 12εd1 = 0

−12εa2
1 + 8εca2 − 24εa0a2 + 24εb2

1 + 48εb0b2 − 8ε3a2c2 − 3ε3a1c3 − 24εd2 = 0

−12εa1a2 + 24εb1b2 − 5εa2c3 − 2ε3a1c4 = 0

−εa2
2 + 4εb2

2 − ε3a2c4 = 0

2εcb1 + 6εa0b1 + 3ε3b2c1 + ε3b1c2 = 0

6εa1b1 + 4εcb2 + 12εa0b2 + 8ε3b2c2 + 3ε3b1c3 = 0

6εa2b1 + 12εa1b2 + 15ε3b2c3 + 6ε3b1c4 = 0

εa2b2 + 2ε3b2c4 = 0

2εcd1 + 6εa0d1 + ε3c2d1 + 3ε3c1d2 = 0

6εa1d1 + 3ε3c3d1 + 4εcd2 + 12εa0d2 + 8ε3c2d2 = 0

6εa2d1 + 6ε3c4d1 + 12εa1d2 + 15ε3c3d2 = 0

εa2d2 + 2ε3c4d2 = 0.

Note that ε = ±1 and hence ε3 = ε. We may eliminate ε from the above system. From the
output of Mathematica, we find three kinds of solutions, namely,

c3 = c1 = a1 = b1 = d1 = 0 a0 = − 1
3 (c + 2c2)

(3.4)
c4 = − 1

2a2 b2 = ± 1
2a2 d2 = 1

3a2(2c ± 3b0 + c2)

with a2, b0, d0, c0, c2, c being arbitrary constants,

c4 = a2 = b2 = d2 = 0 a0 = − 1
6 (2c + c2) c3 = −2a1

(3.5)
b1 = ± 1

2a1 d1 = 1
12a1(8c ± 12b0 + c2)

with a1, b0, d0, c0, c1, c2, c being arbitrary constants and

c3 = a1 = b2 = d2 = 0 a0 = −ca2 + b2
1

a2
c4 = −a2

(3.6)

d1 = 1

8
(16b0b1 − 2a2c1) c = a2c2 − b2

1

4a2

with b0, b1, c0, c1, a2 �= 0 being arbitrary constants.
Now all possible explicit solutions of the generalized coupled Hirota–Satsuma

equation (3.1) are discussed as follows:

(A) From (2.13) and (3.4), we obtain a soliton solution as follows:

u1 = − 1
3 (c + 2c2) + 2c2 sech2(

√
c2ξ)

v1 = b0 ± c2 sech2(
√

c2ξ) (3.7)

w1 = d0 + 2
3 (2c ± 3b0 + c2) sech2(

√
c2ξ) c2 > 0

where ξ = x + ct . The solution obtained from (2.16) and (3.4) is the same as solution
(3.7) by considering a simple transformation c2 → −2c2.
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Again from (2.18) and (3.4), we get a Jacobi doubly periodic solution

u2 = −1

3
(c + 2c2) +

2c2m
2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)

v2 = b0 ± c2m
2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)
(3.8)

w2 = d0 +
2

3
(2c ± 3b0 + c2)

m2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)
c2 > 0

where ξ = x + ct . From (2.19), (2.20) and (3.4), we also get two Jacobi doubly periodic
solutions, but they belong to the same kind of solution as (3.8) under the following
transformations:

c2 → c2(2 − m2)

2m2 − 1
c2 → −c2(m

2 + 1)

2m2 − 1

respectively. As m → 1, the Jacobi periodic solution (3.8) degenerates to the soliton
solution (3.7). If we take d0 = 0, b0 = ∓ 1

3 (2c + c2), then the solutions (3.7) and (3.8)
directly lead to the solutions of the well-known Hirota–Satsuma coupled equation.

(B) (2.21) and (3.5) give the same solution as (3.7) by transformation c2 → 4c2, a1 → a2.
Taking c2 = 0 in (3.5) and then using (2.24), we obtain a Weierstrass periodic solution

u3 = −1

3
c + a1℘

(√
−a1

2
ξ, g2, g3

)

v3 = b0 ± 1

2
a1℘

(√
−a1

2
ξ, g2, g3

)

w3 = d0 +
1

3
(2c ± 3b0)a1℘

(√
−a1

2
ξ, g2, g3

)
a1 < 0

where g2 = 2c1/a1, g3 = 2c0/a1 and ξ = x + ct . Taking d0 = 0, b0 = ∓ 2
3c, the

Weierstrass periodic solution is exactly that of the Hirota–Satsuma coupled equation.
(C) Taking c1 = 0 in (3.6) and then using (2.13) and (2.16), we obtain two soliton solutions

u4 = −ca2 + b2
1

a2
+ c2 sech2(

√
c2ξ)

v4 = b0 + b1

√
c2

a2
sech(

√
c2ξ) (3.9)

w4 = d0 + 2b0b1

√
c2

a2
sech(

√
c2ξ) c2 > 0

and

u5 = −ca2 + b2
1

a2
+

1

2
c2 tanh2

(√
−c2

2
ξ

)

v5 = b0 ± b1

√
c2

2a2
tanh

(√
−c2

2
ξ

)
(3.10)

w5 = d0 ± 2b0b1

√
c2

2a2
tanh

(√
−c2

2
ξ

)
c2 < 0

where ξ = x + a2c2−6b2
1

4a2
t .
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Again from (2.18)–(2.20), we find three Jacobi doubly periodic solutions

u6 = −ca2 + b2
1

a2
+

m2c2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)

v6 = b0 + b1

√
m2c2

a2(2m2 − 1)
cn

(√
c2

2m2 − 1
ξ

)
(3.11)

w6 = d0 + 2b0b1

√
m2c2

a2(2m2 − 1)
cn

(√
c2

2m2 − 1
ξ

)
c2 > 0

u7 = −ca2 + b2
1

a2
+

c2

2 − m2
dn2

(√
c2

2 − m2
ξ

)

v7 = b0 + b1

√
c2

a2(2 − m2)
dn

(√
c2

2 − m2
ξ

)
(3.12)

w7 = d0 + 2b0b1

√
c2

a2(2 − m2)
dn

(√
c2

2 − m2
ξ

)
c2 > 0

and

u8 = −ca2 + b2
1

a2
+

m2c2

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)

v8 = b0 ± b1

√
m2c2

a2(m2 + 1)
sn

(√
− c2

m2 + 1
ξ

)
(3.13)

w8 = d0 ± 2b0b1

√
m2c2

a2(m2 + 1)
sn

(√
− c2

m2 + 1
ξ

)
c2 < 0

where ξ = x + a2c2−6b2
1

4a2
t . As m → 1, the Jacobi periodic solutions (3.11) and (3.12)

degenerate to the soliton solution (3.9), and (3.13) degenerates to (3.10). Taking
b0 = d0 = 0, above solutions directly reduce to the solutions of the Hirota–Satsuma
coupled equation.

Similar to example 1, we can deal with other equations and list the results as follows.

Example 2. The KdV–MKdV equation [38, 39]

ut + (α + βu)uux + uxxx = 0

admits two soliton solutions

u1 = − α

2β
+

√
6(α2 − 4βc)

2β
sech



√

α2 − 4βc

4β
ξ


 α2 − 4βc > 0

u2 = − α

2β
± 1

2β

√
4βc − α2

2
tanh



√

4βc − α2

8β
ξ


 4βc − α2 > 0

and three Jacobi periodic solutions

u3 = − α

2β
+

m

2β

√
6(α2 − 4βc)

2m2 − 1
cn



√

α2 − 4βc

4β(2m2 − 1)
ξ


 α2 − 4βc > 0
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u4 = − α

2β
+

1

2β

√
6(α2 − 4βc)

2 − m2
dn



√

α2 − 4βc

4β(2 − m2)
ξ


 α2 − 4βc > 0

u5 = − α

2β
± m

2β

√
4βc − α2

m2 + 1
sn



√

4βc − α2

4β(m2 + 1)
ξ


 α2 − 4βc < 0.

As m → 1, the Jacobi periodic solutions u3 and u4 degenerate to soliton solutions u1, and u5

degenerates to u2.

Example 3. Ito’s fifth-order MKdV equation [18, 40]

ut +
(
6u5 − 10u2uxx − 10uu2

x + uxxxx

)
x

= 0

admits a soliton solution

u1 =
√−c2

2
tanh

(√−c2

2
ξ

)
c2 < 0

and a Jacobi periodic solution

u2 =
√

−c2m2

m2 + 1
sn

(√ −c2

m2 + 1
ξ

)
c2 < 0

where ξ = x − (
2a2

1c0 + c2
2

)
t . The Jacobi periodic solution u2 degenerates to the soliton

solution u1 when m → 1.

Example 4. Considering the Broer–Kaup equation [41, 42]

ut + uux + vx = 0 vt + ux + (uv)x + uxxx = 0

we obtain a soliton solution

u1 = −c ± 2
√

−2c2 tanh

(√
−c2

2
ξ

)

v1 = −1 − c2 sech2

(√
−c2

2
ξ

)
c < 0

and a Jacobi periodic solution

u2 = −c ± 2

√
− c2m2

m2 + 1
sn

(√
− c2

m2 + 1
ξ

)

v2 = −1 − c2 +
2c2m

2

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)
c < 0

where ξ = x + ct . The Jacobi solution (u2, v2) degenerates to the soliton solution (u1, v1) as
m → 1.

Example 5. The (2 + 1)-dimensional dispersive long wave equation [14, 43]

uyt + uxx + 1
2 (u2)xy = 0 vt + (uv + u + uxy)x = 0

admits a soliton solution

u1 = −d ±
√

−2c2 tanh

(√
−c2

2
ξ

)

v1 = −(1 + cc2) − cc2 tanh2

(√
−c2

2
ξ

)
c2 < 0
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and a Jacobi periodic solution

u2 = −d ± 2

√
− c2m2

m2 + 1
sn

(√
− c2

m2 + 1
ξ

)

v2 = −(1 + cc2) − 2cc2m
2

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)
where ξ = x + cy + dt . The periodic solution (u2, v2) degenerates to the soliton solution
(u1, v1) when m → 1.

In the following, we extend our proposed method to special equations whose solutions
require some kinds of pre-possessing techniques.

Example 6. The coupled Schrödinger–KdV equation

iut = uxx + uv vt + 6vvx + vxxx = (|u|2)x (3.14)

is known to describe various processes in dusty plasma, such as Langmuir, dust-acoustic wave
and electromagnetic waves [44–46]. Here our proposed method is applied to system (3.14)
and gives a series of exact solutions.

We introduce the transformation

u = eiθU(ξ) v = V (ξ) θ = px + qt ξ = x + ct (3.15)

where p, q and c are constants.
Substituting (3.15) into (3.14), we find that c = 2p and U, V satisfy the following coupled

ordinary differential system:

U ′′ + (q − p2)U + UV = 0 2pV ′ + 6V V ′ + V ′′′ − (U 2)′ = 0. (3.16)

Balancing the highest linear term with nonlinear terms in equation (3.9) allows us to choose
the following expansions:

U = a0 + a1ϕ + a2ϕ
2 V = b0 + b1ϕ + b2ϕ

2 (3.17)

where ϕ satisfies equation (2.12).
Substituting (3.17) into (3.16) and using Mathematica, we get the following system of

algebraic equations:

−2p2a0 + 2qa0 + 2a0b0 + 4ε2a2c0 + ε2a1c1 = 0

−2p2a1 + 2qa1 + 2a1b0 + 2a0b1 + 6ε2a2c1 + 2ε2a1c2 = 0

−2p2a2 + 2qa2 + 2a2b0 + 2a1b1 + 2a0b2 + 8ε2a2c2 + 3ε2a1c3 = 0

2a2b1 + 2a1b2 + 10ε2a2c3 + 4ε2a1c4 = 0

2a2b2 + 12ε2a2c4 = 0

−2εa0a1 + 2εpb1 + 6εb0b1 + 3ε3b2c1 + ε3b1c2 = 0

−2εa2
1 − 4εa0a2 + 6εb2

1 + 4εpb2 + 12εb0b2 + 8ε3b2c2 + 3ε3b1c3 = 0

−6εa1a2 + 18εb1b2 + 15ε3b2c3 + 6ε3b1c4 = 0

−4εa2
2 + 12εb2

2 + 24ε3b2c4 = 0.

Since ε3 = ε, ε2 = 1, we may eliminate ε from above system. Then solving the system by
Mathematica gives two sets of solutions

c3 = c1 = a1 = b1 = 0 c4 = − a2

6
√

2
b2 = a2√

2
b0 = −1

3
(p + 6c2 ± δ)

(3.18)
q = 1

3 (p + 3p2 ± δ) a0 = −
√

2(2c2 ± δ) δ =
√√

2a2c0 + 4c2
2
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with c0, c2, p and a2 being arbitrary constants and

c3 = c1 = a0 = b1 = a2 = 0 b0 = −1

3

(
2p + 4c2 +

a2
1

b2

)
(3.19)

c4 = −1

2
b2 q = 1

4

(
2p + 2p2 − 2c2 − a2

1

b2

)
with c0, c2, p and a1, b2 �= 0 being arbitrary constants.

The various travelling wave solutions of equation (3.14) are discussed as follows:

(A) Similar to the discussion of case A in example 1, (2.13), (2.16) and (3.18) lead to the
same kind of soliton solution, namely,

u1 = eiθ [−
√

2(2c2 ± δ) + 6
√

2c2 sech2(
√

c2ξ)]
(3.20)

v1 = − 1
3 (p + 6c2 ± δ) + 6c2 sech2(

√
c2ξ) c2 > 0

where ξ = x + 2pt, θ = px + 1
3 (p + 3p2 ± δ)t .

From (2.18)–(2.20) and (3.18), we obtain Jacobi periodic solutions

u2 = eiθ

[
−

√
2(2c2 ± δ) +

6
√

2m2c2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)]
(3.21)

v2 = −1

3
(p + 6c2 ± δ) +

6m2c2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)
c2 > 0

where ξ = x + 2pt, θ = px + 1
3 (p + 3p2 ± δ)t . The Jacobi periodic solution (3.21)

degenerates to the soliton solution (3.20) as m → 1.
(B) From (2.13), (2.16) and (3.19), we get two soliton solutions

u3 = a1

√
2c2

b2
eiθ sech(

√
c2ξ)

(3.22)

v3 = −1

3

(
2p + 4c2 +

a2
1

b2

)
+ 2c2 sech2(

√
c2ξ) c2 > 0

and

u4 = ±a1 eiθ

√
c2

b2
tanh

(√
−c2

2
ξ

)
(3.23)

v4 = −1

3

(
2p + 4c2 +

a2
1

b2

)
+ c2 tanh2

(√
−c2

2
ξ

)
c2 < 0

where ξ = x + 2pt, θ = px + 1
4

(
2p + 2p2 − 2c2 − a2

1
b2

)
t .

From (2.18)–(2.20) and (3.19), we get three Jacobi doubly periodic solutions as follows:

u5 = a1 eiθ

√
2m2c2

b2(2m2 − 1)
cn

(√
c2

2m2 − 1
ξ

)
(3.24)

v5 = −1

3

(
2p + 4c2 +

a2
1

b2

)
+

2m2c2

2m2 − 1
cn2

(√
c2

2m2 − 1
ξ

)
c2 > 0

u6 = a1 eiθ

√
2c2

b2(2 − m2)
dn

(√
c2

2 − m2
ξ

)
(3.25)

v6 = −1

3

(
2p + 4c2 +

a2
1

b2

)
+

2c2

2 − m2
dn2

(√
c2

2 − m2
ξ

)
c2 > 0
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and

u7 = ±a1 eiθ

√
2m2c2

b2(m2 + 1)
sn

(√
− c2

m2 + 1
ξ

)
(3.26)

v7 = −1

3

(
2p + 4c2 +

a2
1

b2

)
+

2m2c2

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)
c2 < 0

where ξ = x + 2pt, θ = px + 1
4

(
2p + 2p2 − 2c2 − a2

1
b2

)
t . As m → 1, the Jacobi periodic

solutions (3.24) and (3.25) degenerate to the soliton solution (3.22), and (3.26) degenerates
to (3.23).

In a similar way to example 6, we can deal with other special-type nonlinear equations
and list the corresponding results as follows.

Example 7. The Hirota equation reads [47, 48]

iut + uxx + 2|u|2u + iαuxxx + 6 iα|u|2ux = 0

which is the standard Schrödinger equation in the case when α = 0.

The Hirota equation admits two soliton solutions

u1 = √
c2 eiθ sech(

√
c2ξ) c2 > 0

u2 = ± eiθ

√
−c2

2
tanh

(√
−c2

2
ξ

)
c2 < 0

and three Jacobi doubly periodic wave solutions

u3 = eiθ

√
c2m2

2m2 − 1
cn

(√
c2

2m2 − 1
ξ

)
c2 > 0

u4 = eiθ

√
c2

2 − m2
dn

(√
c2

2 − m2
ξ

)
c2 > 0

u5 = ±eiθ

√
− c2m2

m2 + 1
sn

(√
− c2

m2 + 1
ξ

)
c2 < 0

where θ = 1
3α

x − 2
27α2 t, ξ = x − 1

3α

(
1 + 3α2c2

)
t . As m → 1, the Jacobi periodic solutions

u3 and u4 all degenerate to the same soliton solution u1, and u5 degenerates to u2. Now
as an illustrative sample, we draw the plots for these solutions of the Hirota equation. The
properties of soliton solutions u1 and u2 are shown in figures 1 and 2. The properties of the
Jacobi doubly periodic solutions u3, u4 and u5 are shown in figures 3–5, respectively.

Example 8. Nizhnik–Novikov–Veselov equation [49, 50]

ut + uxxx + uyyy + 3
(
u∂−1

y ux

)
x

+ 3
(
u∂−1

x uy

)
y

= 0

admits a soliton solution

u1 = a0 − cc2(1 + c)(c2 − c + 1)

c2 + 1
sech2

(√
c2

2
ξ

)
c2 > 0

and a Weierstrass periodic solution

u2 = a0 + ℘


1

2

√
2a1(1 + c2)

c(1 + c)(c2 − c + 1)
ξ, g2, g3




where g2 = −4c1/c3, g3 − 4c0/c3, ξ = x + cy − ( 6a0
c

+ 6ca0 + c2 + c3c2
)
t .
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Figure 1. The soliton solution u1 and its position at t = 0, where parameters α = 1, c2 = 0.1.
(a) The real part, (b) the imaginary part, (c) the modulus.

Example 9. The (2 + 1)-dimensional coupled Davey–Stewartson equation [1, 4, 51]

iut + uxx − uyy − 2|u|2u − 2uv = 0 vxx + vyy + 2(|u|2)xx = 0

admits two soliton solutions

u1 = eiθ
√

c2(1 + c2) sech(
√

c2ξ)

v1 = 1
2 (q2 − p2 − k + c2 − c2c2) − 1

2 c2 sech2(
√

c2ξ) c2 > 0
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Figure 2. The soliton solution u2 and its position at t = 0, where parameters α = 1, c2 = −0.1.
(a) The real part, (b) the imaginary part, (c) the modulus.

u2 = ± eiθ

√
−c2(1 + c2)

2
tanh

(√
c2

2
ξ

)

v2 = 1

2
(q2 − p2 − k + c2 − c2c2) +

c2(1 + c2)

2
tanh2

(
−
√

c2

2
ξ

)
c2 < 0
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Figure 3. The Jacobi doubly periodic solution u3 and its position at t = 0, where parameters
α = 0.5, c2 = 0.3. (a) The real part, (b) the imaginary part, (c) the modulus.

and three Jacobi doubly periodic solutions

u3 = eiθ

√
2m2(1 + c2)

2m2 − 1
cn

(√
c2

2m2 − 1
ξ

)

v3 = 1

2
(q2 − p2 − k + c2 − c2c2) +

m2c2

2(2m2 − 1)
cn2

(√
c2

2m2 − 1
ξ

)
c2 > 0

u4 = eiθ

√
2(1 + c2)

2 − m2
dn

(√
c2

2 − m2
ξ

)
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Figure 4. The Jacobi doubly periodic solution u4 and its position at t = 0, whereα = 0.5, c2 = 0.3.
(a) The real part, (b) the imaginary part, (c) the modulus.

v4 = 1

2
(q2 − p2 − k + c2 − c2c2) +

c2

2(2 − m2)
dn2

(√
c2

2 − m2
ξ

)
c2 > 0

u5 = ±eiθ

√
m2(1 + c2)

m2 + 1
sn

(√
− c2

m2 + 1
ξ

)

v5 = 1

2
(q2 − p2 − k + c2 − c2c2) +

m2c2(1 + c2)

m2 + 1
sn2

(√
− c2

m2 + 1
ξ

)
c2 < 0

where θ = px + qy + kt, ξ = x + cy − 2(p − qc)t . As m → 1, Jacobi periodic solutions
(u3, v3) and (u4, v4) degenerate to soliton solutions (u1, v1) and (u2, v2), respectively.
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Figure 5. The Jacobi doubly periodic solution u5 and its position at t = 0, whereα = 1, c2 = −0.5.
(a) The real part, (b) the imaginary part, (c) the modulus.

4. Conclusion

In summary, we have proposed a unified algebraic method with symbolic computation, which
greatly exceeds the applicability of the existing tanh method, extended tanh method and Jacobi
elliptic function method in obtaining multiple travelling wave solutions of general nonlinear
evolution equations. The feature of our proposed method is that, without much extra effort,
we circumvent integration to directly get the above series explicit solutions in a uniform way.
Another merit is that the method is independent of the integrability of nonlinear equations, so
that it can be used to solve both integrable and non-integrable nonlinear equations. Viewed as
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a special case of partial differential equations, the method readily applies to nonlinear ordinary
differential equations.

Except those considered in this paper, the proposed method also is readily applicable to
a large variety of other nonlinear equations including classical KdV, MdV, Jaulent–Miodek,
BBM, modified BBM, Benjamin Ono, Kawachra, variant Boussinesq, Schrödinger, Klein–
Gordon, sine-Gordon, sinh-Gordon, Dodd–Bullough–Mikhailov, (2 + 1)-dimensional KP,
(2 + 1)-dimensional Kaup–Kupershmidt, (2 + 1)-dimensional Gardner, (3 + 1)-dimensional
Jimbo–Miwa, coupled KdV, coupled Schrödinger–Boussinesq and coupled Ito equations, etc.
In addition, according to our proposed method the travelling wave solutions of a given nonlinear
equation depend on the explicit solvability of (2.8) with its coefficients c, ai, cj satisfying a
system of algebraic equations. In this paper, we have only investigated a special case when
r = 4. The proposed method can be extended to the case when r > 4. The details for these
cases will be investigated in our future works.
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